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The problem of unsteady natural convection heat transfer in a vertical, open ended, porous cylinder
heated laterally with a sinusoidal time variation of the temperature has been investigated numerically.
The model considered is the classical Darcian flow coupled with the energy equation. In the case of
constant wall temperature, two types of chimney flows take place, with and without fluid recirculation.
The present problem depends on the filtration Rayleigh number (Ra), the aspect ratio (A) and the inlet–
outlet conditions (Bi). For low dimensionless temperature amplitudes (XA< 0.5) in the sinusoidal time
variation, the resulting heat transfer is found to be globally equivalent to the case of constant wall
temperature. The observed relative difference between sinusoidal and constant wall temperature is less
than 5%. This difference decreases as the Ra is reduced.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

Several devices, such as solar energy collectors, circuits fed by
alternating current, storage in ambient conditions, etc., are
supplied by a transient input of energy. Therefore, a better
knowledge of the mechanisms of heat transfer by transient
convection is important. In particular it is of interest to be able to
predict the behaviour of a mass of fluid submitted to variable
heating conditions, from the existing results obtained with
constants imposed temperatures or fluxes.

Many papers are concerned with systems submitted to constant
temperatures or fluxes [1–3]. However, such steady situations do
not cover, in general, wide cases of industrial and natural situations.
Kazmierezak and Chinoda [4] were interested in the transient
natural convection in a square cavity, where the hot vertical wall is
subjected to a periodical temperature variation. The opposite wall
is maintained at a lower constant temperature (cold). They ana-
lysed the effects of the period and the oscillating temperature
amplitude on the heat transfer through the enclosure. All the
obtained transient solutions were found to be periodic in time. It
was also demonstrated that the average heat transfer, evaluated for
one temporal cycle, was roughly equal to the results obtained for
a cavity heated with a constant temperature.

In their experimental work, Mantle-Miller et al. [5] examined
transient natural convection for the case where the temperature of
).
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the hot bottom wall varied periodically in time around a mean
value. The cold upper partition of the cavity is maintained at
constant temperature and the vertical walls are adiabatic. For low
variations of the temperature amplitude, they showed that the
average heat transfer calculated over a cycle was comparable to the
permanent heat transfer coefficient obtained from the mean
temperature of the hot wall. However, for high temperature
modulations, they obtained a difference of more than 10%, between
these two considered cases.

Time-dependent heating in porous media has been the subject
of relatively few studies, in the past. Sözen and Vafai [6] analysed
the behaviour of compressible flows through a packed bed with the
inlet temperature or pressure oscillating with time around a non-
zero mean value. They found that the oscillation had little effect on
the heat storage capacity of the bed. Bradean et al. [7,8] reported
analytical and numerical results for flows past a periodically heated
or cooled vertical or horizontal plate. They found for the vertical
plate, the formation of a row of counter-rotating cells close to the
surface. However, when the Rayleigh number is increased above 40,
the cellular flow was found to move away from the plate. For the
horizontal plate, such a separation effect with Ra did not occur. The
effect of the amplitude of the heating of an enclosure was investi-
gated by Antohe and Lage [9]. They showed that the convective
flow intensity within the enclosure increases linearly with the
heating amplitude.

The aim of the present work is to investigate numerically the
problem of unsteady natural convection which occurs in a vertical
silo of granular storage, opened at both ends and filled with
a saturated porous medium. A varying temperature profile is
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Nomenclature

1, 2, 3, 4 considered monitoring times
a dimensional amplitude
A aspect ratio, A ¼ R=H
A(i) series in Eq. (20)
Bi Biot number
Cp heat capacity at constant pressure
E(m) integration coefficient (Eq. (18))
f regularization function (Eq. (17))
g gravitational acceleration
h convective heat exchange coefficient
H cylinder height
In The nth order Bessel functions
k thermal conductivity
K porous media permeability
L length reference
m number of terms is the series (Eq. (18))
n exponential degree of the regularization (Eq. (17))
Nu Nusselt number
P dimensionless pressure
QT dimensionless total flow rate
r dimensionless radial coordinate
R cylinder radius
Ra filtration Rayleigh number
Rac critical Rayleigh number
Rk conductivity ratio, keff=kf
t dimensionless time
T dimensionless temperature
U dimensionless longitudinal velocity

V dimensionless radial velocity
x dimensionless axial coordinate
XA dimensionless amplitude

Greek letters
a thermal diffusivity
b thermal expansion coefficient
d dimensionless boundary layer thickness
lm characteristics values
m dynamic viscosity
y kinematics viscosity
r fluid density
s calorific capacity ratio, ðrCpÞeff=ðrCpÞf
s dimensionless period

Subscripts
amb ambient
c cold
eff effective
f fluid
h hot
m space averaged value
max maximum
min minimum
ref reference
T time averaged value

Superscripts
0 dimensional variables

Fig. 1. Geometrical configuration.
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imposed on the lateral wall of the enclosure. This condition is
applied in order to simulate the scrolling of the days and the years
(by changing the period). The study is carried out using the Darcy
flow model. The resulting set of governing equations is solved by
a finite volumes method.

2. Mathematical formulation

The problem under consideration, namely natural convection in
open geometry, is particularly difficult to solve numerically. In fact,
the flow rate of the fluid in the channel is imposed indirectly by the
intensity of the heated wall. Consequently, most authors do not
apply the appropriated boundary conditions for the resolution of
the problem. As an illustration of the inaccuracy of the existing
approaches, the recently reported benchmark problem of chimney
effect was discussed by Desrayaud et al. [10]. The inlet and outlet
boundary conditions that have to be applied for this type of prob-
lems are complicated by the possible occurrence of reversal flows
[11,12].

The physical domain of the flow through the vertical porous
cylinder is given in Fig. 1. It is assumed that the flow in the cylinder
is axis-symmetric, allowing a two-dimensional approach. The
porous medium is considered to be homogeneous, isotropic and
saturated with a pure single phase fluid, which is in thermal
equilibrium with the solid matrix. The fluid thermo-physical
properties are assumed to be constant, except the density in the
body force term of the momentum equations where the Boussi-
nesq’s approximation is used. The Darcy flow model is assumed to
be valid.

The analysis is performed in terms of non-dimensional param-
eters. To this end, the non-dimensionalization of the governing
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equations and boundary conditions is carried out using the
following scaling:

Lref ¼ H; DTref ¼ T 0h � T 0c; Pref ¼
�

m$af=K
�

;

Uref ¼ af=H and tref ¼ H2=af (1)

The dimensionless quantities are

ðx; rÞ ¼ ðx
0; r0Þ

Lref
; ðU;VÞ ¼

�
U0;V 0

�
Uref

; T ¼
�
T 0 � T 0c

�
DTref

;

P ¼
�
P0 � P0amb

�
Pref

; t ¼ t0

tref
(2)

The resulting dimensionless continuity and energy equations
are as follows:

v2P
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(3)
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vT
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vT
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�
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v2T
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1
r

v

vr

�
r
vT
vr

�!
(4)

The velocity components are deduced from the obtained pres-
sure field:

U ¼ Ra$T � vP
vx

; V ¼ �vP
vr

(5a,b)

where Ra is the filtration Rayleigh number (Ra ¼ gbDTref KH=ðn$af Þ,
also called Rayleigh–Darcy number), Rk and s are respectively the
conductivity and calorific capacity ratios (between effective and
fluid values).

The dimensionless initial and boundary conditions are then
given by

Initially (at t� 0), it is assumed that the pressure and temper-
ature in the cylinder are uniform and equal to those of the
ambient conditions:

Pðx; r;0Þ ¼ Tðx; r;0Þ ¼ 0 (6)
At t> 0, the inlet/outlet fluid is supposed to be almost at the
ambient pressure, P0amb:

Pð0; r; tÞ ¼ Pð1; r; tÞ ¼ 0 (7a,b)
Owing to the symmetry requirements at the centre line (r¼ 0)
and the impermeable lateral cylinder surface, it follows that:

vP=vrjðx;0;tÞ ¼ vP=vrjðx;A;tÞ ¼ 0 (8a,b)
vT=vrjðx;0;tÞ ¼ 0 (9)

Many authors have suggested in the past that the ambient
temperature can be approximated by a sum of sinusoidal functions
(Boland [13]).

Thus, in the present study, it is assumed that the lateral wall
temperature can be described by a sinusoidal time variation (Fig. 2),
such that:

Tðx;A; tÞ ¼ 1þ XA$sinðð2p=sÞ$tÞ (10)

where A is the cylinder aspect ratio A ¼ R=H, XA and s are
respectively the dimensionless oscillation amplitude
(XA ¼ a=DTref , where a ¼ ðTmax � TminÞ=2), and the period of the
sinusoidal variation of the temperature.
The period can simulate the evolution of the days or that of the
years (sday¼ syear/365). On the other hand, the amplitude gives the
maximum temperature variation which depends on the
geographical situation.

To consider the physical conditions at the bottom and upper
surfaces of the enclosure, expressing the interaction between the
natural convection through the porous domain and the external
ambient fluid, we use the following conditions:

For the top surface:

if U > 0 ðoutgoing flowÞ vT
vx

����
ð1;r;tÞ

¼ �Bi� Tð1; r; tÞ (11a)

if U < 0 ðingoing flowÞ Tð1; r; tÞ ¼ 0 (11b)

For the bottom surface:

if U > 0 ðingoingflowÞ Tð0; r; tÞ ¼ 0 (12a)

if U < 0 ðoutgoingflowÞ vT
vx

����
ð0;r;tÞ

¼ þBi� Tð0; r; tÞ (12b)

where Bi ¼ h$H=keff represents the equivalent Biot number of the
porous matrix–air interface. h is the convective exchange coeffi-
cient and keff the porous media effective conductivity.

Heat transfer through the system is represented in term of local
Nusselt number defined as

Nuðx; tÞ ¼ �vTðx; r; tÞ
vr

����
r¼A

(13)

The space averaged Nusselt number along the cylinder is
defined as

Nu ¼ NuðtÞ ¼ Nuðx; tÞ ¼
Z1

0

Nuðx; tÞ$dx (14)

and the time averaged total Nusselt number is given by

NuT ¼
1
s

Zs

0

NuðtÞ$dt (15)

The resulting transient dimensionless total flow rate (chimney
effect) is expressed as
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QTðtÞ ¼ 2p
ZA

0

Uð1; r; tÞ$r$dr (16)

3. Numerical procedure

The governing equations (Eqs. (3)–(5)) with the associated
initial and boundary conditions (Eqs. 6–12) are solved using the
finite volumes method, introduced by Spalding (see Patankar [14]),
which is based on solving the different equations obtained by
integrating the governing equations over control volumes enclos-
ing the nodal points. The resulting algebraic system can be solved
by an iterative procedure using the alternate direction implicit
method (ADI). An error less than 10�6 over all grid points is adopted
as the convergence criterion for the pressure and the temperature
variables. The results reported in this work are obtained using at
least 81�81 irregular grid distribution. For some cases, the
threshold convergence value is exceeded and a finer grid must be
used. The numerical program is tested for both the pure conduction
and the classical Darcy natural convection problem in a square
porous cavity.

We underline the existence of singularities at the cylinder wall
edges, where the cold and hot surfaces are in direct contact, i.e. the
local temperature gradient tends to infinity. In a physical situation,
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Fig. 4. Analytical and numerical tempera
the relaxation phenomenon induces a connection domain in which
the temperature decreases from hot to cold values. To reach a grid
independence and to converge towards a unique solution, the
singularity is treated using temperature regularization on the wall
(see for instance Bennacer et al. [15] and Ameziani et al. [16]) as

f ðxÞ ¼ Tðx;A; tÞ ¼
�

1� ð1� 2$xÞ2n
�2
þXA$sinðð2p=sÞ$tÞ (17)

The ‘n’ value controls the domain affected by the temperature
transition. It is found that n¼ 50 is enough to reach an asymptotic
situation, where no grid effect and only a small domain is affected
by the temperature transition (Dx less than 0.001).

In the case of the steady state pure conduction and for
a constant applied temperature, an analytical solution is obtained,
using variable separation, as

Tðr; xÞ ¼
Xm¼N

m¼1

½EðmÞ$I0ðlm$rÞ$sinðlm$xÞ� (18)

where I0 is the zero order Bessel function, lm is the solutions of the
equation �lm ¼ Bi tgðlmÞ and E(m) is the integration coefficients
taking into account the external applied irregular temperature
condition, given by

EðmÞ ¼ 2
I0ðlm$AÞ

Z1

0

�
1� ð1� 2$xÞ2n

�2
:sinðlm$xÞ :dx (19)

It is noted that the integral E2nðmÞ ¼ ð2=I0ðlmÞÞ½�1=lmðcosðlmxÞ
�1Þ � 2Að2nÞ þ Að4nÞ� is given by a successive integration-by-parts
procedure where the coefficients are necessary and have a first
series element:

Að0Þ ¼ 1
lm
ð1� cosðlm$xÞÞ (II-20)

And a series of

AðiÞ ¼ � 1
lm

"
1þ ð�1Þi

2
þ 2ið�1ÞiAði� 1Þ

#
(II-21)

Eq. (18), combined with the Nusselt expression (Eqs. (13) and
(14)) gives the analytical expression of the resulting heat transfer
(averaged Nusselt number) as
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Table 1
Comparison of Num with some previous numerical results in a confined domain for
A¼ 1, Bi� 1.

Authors Ra

102 103

Walker and Homsy [17] 3.097 12.960
Trevisan and Bejan [18] 3.270 18.380
Lauriat and Prasad [19] 3.090 13.410
Nithiarasu et al. [20–22] 2.970 11.460
Nithiarasu and Ravindran [23] 2.988 12.303
Baytas [24] 3.160 14.060
Massarotti et al. [25] 3.039 13.464
Bennacer et al. [26] 3.110 13.480
Saeid and Pop [27] 3.100 13.442
Present results 3.140 13.580
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Nu ¼
Xm¼N

m¼1

½EðmÞ$I1ðlm$AÞ$ð1� cosðlmÞÞ� (22)

where I1 is the first order Bessel function.
The obtained series solutions (‘m’ in Eq. (22)) are represented in

Fig. 3. The effect of m on the corresponding Nu with and without
(f(x)¼ 1) regularization is compared. We can observe the good
convergence of the analytical solution with m in case of regulari-
zation. The case with singularities at the corners (without regula-
rization f ðxÞ ¼ Tðx;AÞ ¼ 1) leads to an obvious non-convergence
of the analytical solution (Eq. (22)). The numerical resolution of this
last case exhibits a relative convergence with grids refinement.

The present code is validated, in the conductive regime, by
comparing the numerical temperature fields with the analytical
one, as illustrated in Fig. 4. The results are obtained for two
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different applied boundary conditions on the horizontal surfaces,
namely constant temperatures (Bi>> 1) and adiabatic (Bi<< 1)
ones, respectively. The numerical results are represented by solid
lines and the analytical solution by the dashed lines (Fig. 4). It is
clear from these results that a good agreement is obtained for the
different aspect ratio considered. The observed differences in Fig. 4
(right side) are due to our choice to represent the analytical solu-
tion by series of m¼ 140 in order to distinguish the numerical–
analytical representation. For series of m> 350, the analytical and
numerical results are in very good agreement

For natural convection, the numerical model is validated
adopting the classical Darcy natural convection problem in a square
porous cavity. The comparison between our numerical results with
previous works, based on the average Nusselt number (Num), is
shown in Table 1, for Ra¼ 102 and Ra¼ 103. A good agreement is
also observed in convective regime for the two values of Ra
considered.
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4. Results

The results are presented and discussed in terms of velocity,
pressure and temperature fields. Plots showing the evolution of
space and time averaged Nusselt numbers are also presented. Due
to the number of variables involved in the present problem, all
calculations have been performed for a conductivity ratio, aspect
ratio and calorific capacity ratio of unity, i.e. Rk¼ A¼ s¼ 1.
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4.1. Constant wall temperature

Fig. 5 shows temperature and velocity fields for various Rayleigh
numbers in the case of Bi¼ 0.01. The isotherms are similar to those
reported for a semi-infinite porous medium bounded by a heated
vertical plate. The results indicate that heat propagates from the
heated vertical cylinder towards the top of the domain, creating
significant thermal gradients in the horizontal/vertical direction.
The flow intensity is maximum near the heated wall region and
minimum near the centre, where thermal buoyancy forces are
weak. The velocity vector field shows that, for small filtration
Rayleigh number values (Ra¼ 1 and 50), the flow is ascendant over
the entire domain. The resulting, relatively weak flow is mainly
unidirectional.

When Ra increases, the thermal boundary layer thickness
reduces, generating a reduction of thermal gradients in the core of
the porous cylinder. In such situation, the velocity values near the
wall increase, and the fluid flow in the cylinder is supplied both
from the bottom and partially from the top surface of the domain.
This can be explained by the fact that a pressure gradient occurs in
the bulk of the cylinder ‘‘cylinder centre line’’ (Fig. 6) without any
other buoyancy forces. The resulting volume forces induce
a counter-flow in the region around the centre line. This
phenomena is a direct consequence of the increase of Ra, for which
the thermal boundary layer reaches an adequate scale in compar-
ison with the cylinder radius. The fluid in the cylinder centre is at
rest and the two counter-flows indicate the existence of stagnation
lines (cf. Fig. 6). Note that this result is in good agreement with that
reported by Benasrallah et al. [28], while studying the thermal
equilibrium in a porous cylinder subjected to a constant flux. The
existence of reverse flows is observed to occur in for a large range of
Bi values. The Ra number required to obtain reverse flows depen-
dents strongly on Bi and aspect ratio.

In the case of A¼ 1, Fig. 7 gives the critical Rayleigh number, for
the appearance of a top fluid aspiration, for different values of Bi.
We can categorize the critical Ra behaviour according to the fact
that the Biot number is weak, high or moderate.
The two first behaviours (weak and high values of Bi) corre-
spond to the two extreme asymptotical situations (i.e. thermal field
not function of the Biot number values) equivalent to isotherm
(Bi [ 1) or adiabatic (Bi� 1) applied boundary conditions.

The increase of Rac with Bi is a direct consequence of the flow
intensity (chimney effect) decrease. Such flow intensity decreases
are related to the effect of the thermal boundary condition inducing
a fluid cooling in the upper cylinder part.

It is noted that the weak and high Bi values exhibit two
asymptotic tendency for which the critical Rayleigh numbers are
Rac¼ 52 and 73, respectively.
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4.2. Sinusoidal wall temperature

To obtain an overall comparison of the heat transfer character-
istics for the time-depending heating condition, the influences of
the temperature oscillation on the relative heat transfer variation
((NuT�Nu)/Nu) are presented in Fig. 11 for different Rayleigh
numbers, amplitudes and a low Biot number (Bi¼ 0.01).

First, the space averaged Nusselt number (Num), for steady
constant wall temperature (XA¼ 0) is shown in Fig. 8 versus Ray-
leigh and Biot numbers. This plot clearly indicates the increase of
heat transfer with Rayleigh number. The flow enhancement with
buoyancy forces increases the thermal gradients near the lateral
heated wall.

For low Rayleigh values, the heat transfer exhibits an asymptotic
value corresponding to the diffusive regime. The obtained
conductive (low Ra) values are Bi dependent. The analytical
conductive heat transfer coefficients (Eq. (22)) are plotted (Fig. 8)
for different values of Bi. A good agreement is observed between
the analytical and the numerical results.

It is observed that the heat transfer increases with the Biot
number only for low Rayleigh number values. This is not the case
for high Rayleigh numbers for which the flow exhibits a boundary
layer structure where the weight effect of the exit boundary
condition on the global flow decreases. Consequently all the curves,
for different Biot numbers, tend to the boundary layer convective
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heat transfer. The resulting heat transfer variation ðNuw1=dÞ is
given by

NuwRa1=2 (23)

The Nusselt number in the boundary layer regime is represented
by the dashed line in Fig. 8. The resulting fitted Nu curve is given by

Nu ¼ 0:695� Ra0:49 (24)

Note that Simpkins and Blythe [29] gave correlation for the case
of heat transfer in a rectangular porous cavity fitted like:
Nu ¼ 0:51� Ra0:51. This correlation is fitted on the same figure.
The difference between the two cases is probably due to the
cylindrical strangulation (effect of the radius) which growth the
flow rate and then the heat transfer.

Fig. 9a and b illustrates the temporal evolution of the space
averaged Nusselt for different Rayleigh numbers and different
dimensionless amplitudes. The monitoring points (1, 2, 3, 4)
correspond to the temporal position over the sinusoidal wall
temperature (see Fig. 2).

Initially, all the curves illustrate a transition from the conductive
regime to an oscillatory behaviour. An exponential damping of the
heat transfer fluctuation is clearly observed. The time period
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required for these transitions decreases with the increase of the
Rayleigh number. After the transition period the curves show
a periodical evolution where the constant temperature formulation
corresponds to the case of very low dimensionless amplitude
(XA� 1).

For the presented tests, the temperature variation oscillation
period is fixed as s¼ 3. In the conductive regime (Ra¼ 0), the
temporal evolution of the heat transfer is mainly sinusoidal for
all the considered amplitudes, and the Nu evolution can be
predicted as

Nu ¼ Nusteady þ ððNu2 � Nu4Þ=2Þ � sinðð2p=sÞ � tÞ (25)

where Nusteady is the obtained steady state Nusselt with constant
temperature (XA¼ 0). Nu2 and Nu4 are respectively the Nusselt
numbers at times noted 2 and 4, respectively.

The increase of Rayleigh number induces a loss of the symmetry
time-evolution in comparison to the constant wall temperature
case. This dissymmetry is more pronounced with the increase of
the dimensionless amplitude (XA). In such non-symmetrical case
Eq. (25) is not valid.

Fig. 10a and b shows the phase diagrams of heat transfer-flow
rate (Nu–QT) for the two cases of low and high Rayleigh numbers,
respectively. The closed loops clearly indicate the periodicity of the
phenomena in these two situations. The phase shift and the Nu loss
of symmetry exhibit an average time space Nusselt different from
the steady state reference case.

For low Rayleigh numbers (Fig. 9a), it is observed that there is no
phase shift in the response of the system (points 1 and 3 are on the
same horizontal). Elsewhere for high Ra, the heat transfer is
controlled by the aspirated fluid flow.

Fig. 11 illustrates the effect of the dimensionless amplitude on
the relative heat transfer enhancement (DNu/Nu), for different
Rayleigh values. For low dimensionless amplitudes (XA< 0.5), we
observe an equivalence between constant and time-dependent
heating conditions (relative change is less than 5%).

For amplitudes bigger than 0.5 we observe a significant heat
transfer enhancement. These latter increases for high Rayleigh
values. The heat transfer difference goes from the reference value
(i.e. equivalence between constant and sinusoidal variation) to an
increase of 19.5% while the dimensionless amplitude reaches 0.99.
illation on the relative heat transfer.
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5. Conclusion

The problem of natural convection heat transfer in a vertical
cylinder with open ends (which can be a vertical storage silo), filled
with a fluid-saturated porous medium and heated with a sinusoidal
lateral wall temperature, was the main focus of the present work. The
results showed two types of flow, the main one is mainly unidirec-
tional and the other one exhibits the presence of counter-flows.

The reverse flow function of Ra and Bi is a result of the pressure
gradient effect occurring outside the thermal boundary layer.

The Bi effect illustrates three principal domains:

� The weak and high Bi values exhibit a constant asymptotic Rc

tendency.
� The intermediate Bi values exhibit an increase of Rac with Bi

connecting the two asymptotic values.

The periodical heating was analysed and gives important
results.

For the low dimensionless amplitudes case (XA< 0.5), the
resulting heat transfer in the sinusoidal time variation case is
equivalent to the case of constant wall temperature with a differ-
ence less than 5%.

For high Rayleigh number, the resulting heat transfer from the
sinusoidal time variation case and the constant wall temperature
case is different, and the heat transfer difference increases up to
20% when the dimensionless amplitude reaches 0.99. This result
gives the validity domain of the constant temperature formulation
which is closely dependent with the temperature oscillation.
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